amort

Python Cheat Sheet for Beginners

Learn Python online at www.DataCamp.com

Python is the most popular programming language in data science. It is easy to learn and comes with a wide array of
powerful libraries for data analysis. This cheat sheet provides beginners and intermediate users a guide to starting
using python. Use it to jJump-start your journey with python. If you want more detailed Python cheat sheets, check out
the following cheat sheets below:

N e— e ] e st TS T
g ua Smma Beriaarm
e
. S, S —
== ]
- | g —=_______|
a==________|
- C— ]
- CEE—
| EET——
= ]

Importing data in pythonDag@ wrangling in pandas

>

1 + 1 # Everything after the hash symbol is ignored by Python
help(max) # Display the documentation for the max function
type('a’) # Get the type of an object — this returns str

mpotingpackages

Python packages are a collection of useful tools developed by the open-source community. They extend the

capabilities of the python language. To install a new package (for example, pandas), you can go to your command
prompt and type in pip install pandas. Once a package is installed, you can import it as follows.

import pandas # Import a package without an alias
import pandas as pd # Import a package with an alias
from pandas import DataFrame # Import an object from a package

© Theworkingdirectory

The working directory is the default file path that python reads or saves files into. An example of the working directory is
"C:/lfile/path”. The os library is needed to set and get the working directory.

import os # Import the operating system package
os.getcwd() # Get the current directory
>setcwd("new/working/directory") # Set the working directory to a new file path

Arithmetic operators

102 + 37 # Add two numbers with +

102 - 37 # Subtract a number with -

4 * 6 # Multiply two numbers with *

22 | 7 # Divide a number by another with /

22 /1 7 # Integer divide a number with //
3 ** 4 # Raise to the power with **
22 % 7 # Returns 1 # Get the remainder after division with %

Assignment operators

a=5# Assign avalue to a
X[0] = 1 # Change the value of an item in a list

Numeric comparison operators

3 == 3 # Test for equality with ==
3 1= 3 # Test for inequality with = 3 >= 3 # Test greater than or equal to with >= 3 < 4 # Test
3 > 1 # Test greater than with > less than with <

3 <=4 # Test less than or equal to with <=

Logical operators

~(2 == 2) # Logical NOT with ~ (1 !1=1) & (1 <1) #
Logical AND with &

(1>=1)|(1<1)#Logical OR with |
(1!=1)~(1<1)#Logical XOR with ~

>

A list is an ordered and changeable sequence of elements. It can hold integers, characters, floats, strings, and even objects.

Creating lists

# Create lists with [], elements separated by commas x = [1, 3, 2]

List functions and methods

x.sorted(x) # Return a sorted copy of the list e.g., [1,2,3] x.sort() # Sorts the list in-
place (replaces x)

reversed(x) # Reverse the order of elements in x e.g., [2,3,1] x.reversed() #
Reverse the list in-place

x.count(2) # Count the number of element 2 in the list

Selecting list elements

Python lists are zero-indexed (the first element has index 0). For ranges, the first element is included but the last is not.

# Define the list

x =[a','b, 'c,'d, 'e] x[1:3] # Select 1st (inclusive) to 3rd (exclusive) x[0] # Select the Oth element in the listx[2:] # Select the 2nd
to the end

X[-1] # Select the last element in the listx[:3] # Select Oth to 3rd (exclusive)

Concatenating lists

# Define the x and y lists x = [1, 3, X + y# Returns [1, 3, 6, 10, 15, 21]
6] 3*x#Returns [1, 3,6, 1, 3,6, 1, 3, 6]
y =[10, 15, 21]

>

A dictionary stores data values in key-value pairs. That is, unlike lists which are indexed by position, dictionaries are indexed by

their keys, the names of which must be unique.

Creating dictionaries

# Create a dictionary with {}
{a:1,'b" 4,'c: 9}

Dictionary functions and methods

x={a'"'1,'b": 2, 'c" 3} # Define the x ditionary
x.keys() # Get the keys of a dictionary, returns dict_keys(['a’, 'b’, 'c'])
x.values() # Get the values of a dictionary, returns dict_values([1, 2, 3])

Selecting dictionary elements

x['a'l # 1 # Get a value from a dictionary by specifying the key

>

NumPy is a python package for scientific computing. It provides multidimensional array objects and efficient operations on
them. To import NumPy, you can run this Python code import numpy as np

Creating arrays

# Convert a python list to a NumPy array

np.array([1, 2, 3]) # Returns array([1, 2, 3])

# Return a sequence from start (inclusive) to end (exclusive) np.arange(1,5) # Returns
array([1, 2, 3, 4])

# Return a stepped sequence from start (inclusive) to end (exclusive) np.arange(1,5,2) #
Returns array([1, 3])

# Repeat values n times

np.repeat([1, 3, 6], 3) # Returns array([1, 1, 1, 3, 3, 3, 6, 6, 6])

# Repeat values n times

np.tile([1, 3, 6], 3) # Returns array([1, 3, 6, 1, 3, 6, 1, 3, 6])

>

All functions take an array as the input.

np.quantile(x, q) # Calculate g-th quantile
np.round(x, n) # Round to n decimal places
np.var(x) # Calculate variance

np.std(x) # Calculate standard deviation

np.log(x) # Calculate logarithm
np.exp(x) # Calculate exponential
np.max(x) # Get maximum value
np.min(x) # Get minimum value
np.sum(x) # Calculate sum
np.mean(x) # Calculate mean

>

>

# Create a string with double or single quotes
"DataCamp"

# Embed a quote in string with the escape character \
"He said, \"DataCamp\""

# Create multi-line strings with triple quotes

A Frame of Data

Tidy, Mine, Analyze It

Now You Have Meaning

Citation: https://mdsr-book.github.io/haikus.html

str[0] # Get the character at a specific position
str[0:2] # Get a substring from starting to ending index (exclusive)

Combining and splitting strings

"Data" + "Framed" # Concatenate strings with +, this returns 'DataFramed’
3 * "data " # Repeat strings with *, this returns 'data data data '
" ekeepers".split("e") # Split a string on a delimiter, returns ['b’, ", 'K', ", 'p’, 'rs]

utate strings

str = "Jack and Jill" # Define str

str.upper() # Convert a string to uppercase, returns 'JACK AND JILL'

str.lower() # Convert a string to lowercase, returns ‘jack and jill

str.title() # Convert a string to title case, returns 'Jack And Jill'

str.replace("J", "P") # Replaces matches of a substring with another, returns ‘Pack and Pill'

Pandas is a fast and powerful package for data analysis and manipulation in python. To import the package, you can
use import pandas as pd. A pandas DataFrame is a structure that contains two-dimensional data stored as rows and
columns. A pandas series is a structure that contains one-dimensional data.

Creating DataFrames

# Create a dataframe from a dictionary # Create a dataframe from a list of dictionaries pd.DataFrame([

pd.DataFrame({ {a 1,'b": 4,'c: 'x},
‘a': [1, 2, 3], {a 1,'b": 4,'c: 'x},
'b": np.array([4, 4, 6]), {a 3,'b: 6,'c:'y}

e X, %, Y] )

)

Selecting DataFrame Elements

Select a row, column or element from a dataframe. Remember: all positions are counted from zero, not one.

# Select the 3rd row

df.iloc[3]

# Select one column by name

dff'col]

# Select multiple columns by names

dff['coll’, 'col21]

# Select 2nd column

df.iloc[:, 2]

# Select the element in the 3rd row, 2nd column
df.iloc[3, 2]

Manipulating DataFrames

# Concatenate DataFrames vertically # Calculate the mean of each column df.mean()
pd.concat([df, df]) # Get summary statistics by column

# Concatenate DataFrames horizontally df.agg(aggregation_function)
pd.concat([df,df],axis="columns") # Get unique rows

# Get rows matching a condition df.drop_duplicates()

df.query('logical_condition") # Sort by values in a column

# Drop columns by name df.sort_values(by='col_name’)

# Get rows with largest values in a column df.nlargest(n,

# Rename columns ‘col_name’)

df.drop(columns=['col_name'])

df.rename(columns={"oldname": "newname"})
# Add a new column
df.assign(temp_f=9 /5 * df['temp_c'] + 32)



